
Week 1 - Friday

 Finished Big Theta examples
 Proof techniques
 Tractability

 For Diwali, Mr. Patel's five daughters gave each other books
as presents.

 Each presented four books and each received four books, but
no two girls divided her books in the same way.

 That is, only one gave two books to one sister and two to
another. Bharat gave all her books to Abhilasha; Chandra
gave three to Esha.

 Who gave how many books to whom? (Mr. Patel's fourth
daughter is named Deeti.)

 We'll start with basic definitions of even and odd to allow us to
prove simple theorems

 If n is an integer, then:
 n is even ⇔∃ k ∈ Z such that n = 2k
 n is odd ⇔∃ k ∈ Z such that n = 2k + 1

 Since these are bidirectional, each side implies the other

 Pick some specific (but arbitrary) element from the domain
 Show that the property holds for that element, just because

of that properties that any such element must have
 Thus, it must be true for all elements with the property
 Example: ∀x ∈ Z, if x is even, then x + 1 is odd

 Direct proof uses the method of generalizing from a generic
particular, following these steps:
1. Express the statement to be proved in the form ∀x ∈ D, if P(x) then

Q(x)
2. Suppose that x is some specific (but arbitrarily chosen) element of

D for which P(x) is true
3. Show that the conclusion Q(x) is true by using definitions, other

theorems, and the rules for logical inference

 Prove the sum of any two odd integers is even.

 In a proof by contradiction, you begin by assuming the
negation of the conclusion

 Then, you show that doing so leads to a logical impossibility
 Thus, the assumption must be false and the conclusion true

 A proof by contradiction is different from a direct proof
because you are trying to get to a point where things don't
make sense

 You should always clearly state that it's a proof by
contradiction

 You will reach a point where you have p and ~p, mark that as a
contradiction

 If you're doing a proof by contradiction and you actually show
the thing you wanted to prove in the first place, it's not a
proof!

 Theorem: There is no integer that is both even and odd.
 Proof by contradiction: Assume that there is an integer that

is both even and odd

1. Suppose 2 is rational
2. 2 = m/n, where m,n ∈Z, n ≠ 0 and

m and n have no common factors
3. 2 = m2/n2

4. 2n2 = m2

5. 2k = m2, k ∈Z
6. m = 2a, a ∈Z
7. 2n2 = (2a)2 = 4a2

8. n2 = 2a2

9. n = 2b, b ∈Z
10. 2 divides m and 2 divides n

11. 2 is irrational
∎

1. Negation of conclusion
2. Definition of rational

3. Squaring both sides
4. Multiply both sides by n

2

5. Square of integer is integer
6. Even x

2
implies even x (Proven elsewhere)

7. Substitution
8. Transitivity
9. Even x

2
implies even x

10. Conjunction of 6 and 9, contradiction

11. By contradiction in 10, supposition is false

Theorem: 2 is irrational
Proof by contradiction:

 We want a way to bound the size of an algorithm's running
time in terms of its input size

 Measuring the exact number of operations would be a lot of
detailed work
 Which would probably be invalid in a different programming

language or on a different processor
 Instead, a simplified, rough outline of the speed at which a

running time increases with input size is more useful

 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 T(n) is O(f(n)) if and only if
 T(n) ≤ c∙f(n) for all n ≥ n0 where n0 ≥ 0
 for some positive real numbers c and n0

 In other words, past some arbitrary point, with some arbitrary
scaling factor, f(n) is at least as big

 We say that T(n) is upper bounded by f(n)

 Why not?
 We can assume that n ≥ 1
 In that situation, n ≤ n2 ≤ n3 ≤ n4, etc.
 Thus, they can get wrapped into our constant:
 pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p + q + r)n2

 From a practical perspective, lower order terms will also have
relatively no impact when n gets large

 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 T(n) is Ω(f(n)) if and only if
 T(n) ≥ ε∙f(n) for all n ≥ n0 where n0 ≥ 0
 for some positive real numbers ε and n0

 In other words, past some arbitrary point, with some arbitrary
scaling factor, f(n) is no bigger

 We say that T(n) is lower bounded by f(n)

 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 If T(n) is O(f(n)) and Ω(f(n)), we say that T(n) is Θ(f(n))
 In other words, past some arbitrary point, with some arbitrary

scaling factor, f(n) grows at about the same rate
 We say that T(n) is tightly bounded by f(n)

 Given two functions f(n) and g(n), if

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛)

= 𝑐𝑐 > 0

 Then f(n) is is Θ(g(n)) (and vice versa)
 Why?
 Because of how a limit works, there is some n beyond which the ratio

of f(n) to g(n) will be between 1
2
𝑐𝑐 and 2c, making f(n) both O(g(n))

and Ω(g(n))

 Both this book and many others "abuse" notation by saying
things like:
 T(n) = O(n2)
 T(n) = Ω(log n)
 T(n) = Θ(𝑛𝑛)

 Those equal signs do not represent mathematical equality
 Instead, they should be read "is"
 It's a shorthand
 I recommend that you do not use it

 If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))
 If f(n) is Ω(g(n)) and g(n) is Ω(h(n)), then f(n) is Ω(h(n))
 If f(n) is Θ(g(n)) and g(n) is Θ(h(n)), then f(n) is Θ(h(n))
 Prove it.

 If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))
 Prove it.
 If g(n) is O(f(n)), then f(n) + g(n) is Θ(f(n))
 This is another way of showing that lower order terms don't matter.

 A polynomial of degree d can be written as f(n) = a0 + a1n +
a2n2 + … + adnd, where ad > 0

 For any such polynomial, f(n) is Θ(nd)
 To prove this, note that any term ajnj ≤ |aj|nd when n > 1

 There is a function called the logarithm with base b of x
defined from R+ to R as follows:
 logb x = y ⇔ by = x

 Logarithms are very slowly growing functions, slower than
any polynomial function:
 For any b > 1 and every x > 0, logb n is O(nx)
 Even n0.00001 grows faster than log n

 The base of a logarithm doesn't matter in asymptotic notation
 Why?

 log𝑎𝑎 𝑛𝑛 = log𝑏𝑏 𝑛𝑛
log𝑏𝑏 𝑎𝑎

 Thus, logb n = (logb a)loga n = cloga n

 On the other end of the spectrum, any exponential with a
base r > 1 will grow faster than any polynomial
 For every r > 1 and every d > 0, nd is O(rn)
 Even 1.0001n grows faster than n1000

 People talk about "exponential time," but all exponents are
actually different
 For every r > 1 and every s > r, rn is O(sn)

 All 2n people want to get married
 All of them are willing to marry any of the n members of the

opposite gender
 Each woman has ranked all n men in order of preference
 Each man has ranked all n women in order of preference
 We want to match them up so that the marriages are stable

 Consider two marriages:
 Anna and Bob
 Caitlin and Dan

 This pair of marriages is unstable if
 Anna likes Dan more than Bob and Dan likes Anna more than Caitlin

or
 Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna

 We want to arrange all n marriages such that none are
unstable

 Finish stable marriage
 Five representative problems
 Implementing stable marriage

 No class Monday!
 Read Section 2.3
 Assignment 1 is due next Friday

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Proving Universal Statements
	A useful definition
	Generalizing from the generic particular
	Direct proof
	Direct proof example
	Proof by contradiction
	Contradiction formatting
	Proof by contradiction example
	 2 is irrational
	Asymptotic Order of Growth
	Rule of thumb
	Upper bounds
	Lower order terms don't matter
	Lower bounds
	Tight bounds
	Another way to look at tight bounds
	Abuse of notation
	Properties of Asymptotic Bounds
	Transitivity
	Sums
	Polynomial bounds
	Logarithms
	Bases don't matter
	Exponential bounds
	Three-sentence Summary of Stable Marriage and Five Representative Problems
	Stable Marriage
	Imagine n men and n women
	Stability
	Upcoming
	Next time…
	Reminders

