Week 1 - Friday
COMP 4500

Last time

- Finished Big Theta examples
- Proof techniques
- Tractability

Questions?

Logical warmup

- For Diwali, Mr. Patel's five daughters gave each other books as presents.
- Each presented four books and each received four books, but no two girls divided her books in the same way.
- That is, only one gave two books to one sister and two to another. Bharat gave all her books to Abhilasha; Chandra gave three to Esha.
- Who gave how many books to whom? (Mr. Patel's fourth daughter is named **Deeti**.)

Proving Universal Statements

A useful definition

- We'll start with basic definitions of even and odd to allow us to prove simple theorems
- If *n* is an integer, then:
 - n is even $\Leftrightarrow \exists k \in \mathbb{Z}$ such that n = 2k
 - *n* is odd $\Leftrightarrow \exists k \in \mathbb{Z}$ such that n = 2k + 1
- Since these are bidirectional, each side implies the other

Generalizing from the generic particular

- Pick some specific (but arbitrary) element from the domain
- Show that the property holds for that element, just because of that properties that any such element must have
- Thus, it must be true for all elements with the property
- Example: $\forall x \in Z$, if x is even, then x + 1 is odd

Direct proof

- Direct proof uses the method of generalizing from a generic particular, following these steps:
 - 1. Express the statement to be proved in the form $\forall x \in D$, if P(x) then Q(x)
 - Suppose that x is some specific (but arbitrarily chosen) element of D for which P(x) is true
 - 3. Show that the conclusion **Q**(**x**) is true by using definitions, other theorems, and the rules for logical inference

Direct proof example

Prove the sum of any two odd integers is even.

Proof by contradiction

- In a proof by contradiction, you begin by assuming the negation of the conclusion
- Then, you show that doing so leads to a logical impossibility
- Thus, the assumption must be false and the conclusion true

Contradiction formatting

- A proof by contradiction is different from a direct proof because you are trying to get to a point where things don't make sense
- You should always clearly state that it's a proof by contradiction
- You will reach a point where you have p and ~p, mark that as a contradiction
- If you're doing a proof by contradiction and you actually show the thing you wanted to prove in the first place, it's not a proof!

Proof by contradiction example

- Theorem: There is no integer that is both even and odd.
 Proof by contradiction: Assume that there is an integer that
 - is both even and odd

$\sqrt{2}$ is irrational

Theorem: $\sqrt{2}$ is irrational **Proof by contradiction**:

- 1. Suppose $\sqrt{2}$ is rational
- 2. $\sqrt{2} = m/n$, where $m, n \in \mathbb{Z}$, $n \neq 0$ and m and n have no common factors
- 3. $2 = m^2/n^2$
- 4. $2m^2 = m^2$
- 5. $2\mathbf{k} = \mathbf{m}^2, \mathbf{k} \in \mathbf{Z}$
- $6. \quad m=2a, a\in \mathbb{Z}$
- 7. $2n^2 = (2a)^2 = 4a^2$
- 8. $n^2 = 2a^2$
- $9. \quad n=2b, b\in \mathbb{Z}$
- 10. 2 divides *m* and 2 divides *n*
- 11. $\sqrt{2}$ is irrational

- 1. Negation of conclusion
- 2. Definition of rational
- 3 Squaring both sides
- 4. Multiply both sides by n^2
- Square of integer is integer
 Even x² implies even x (Prov
- ^{6.} Even \mathbf{x}^{\dagger} implies even \mathbf{x} (Proven elsewhere)
- 7. Substitution
- 8. Transitįvity
- 9. Even \mathbf{x}^2 implies even \mathbf{x}
- 10. Conjunction of 6 and 9, contradiction
- 11. By contradiction in 10, supposition is false

Asymptotic Order of Growth

Rule of thumb

- We want a way to bound the size of an algorithm's running time in terms of its input size
- Measuring the exact number of operations would be a lot of detailed work
 - Which would probably be invalid in a different programming language or on a different processor
- Instead, a simplified, rough outline of the speed at which a running time increases with input size is more useful

Upper bounds

- Let T(n) be the running time of an algorithm
- Let f(n) be a non-decreasing function
- *T(n)* is *O(f(n))* if and only if
 - $T(n) \le c \cdot f(n)$ for all $n \ge n_0$ where $n_0 \ge 0$
 - for some positive real numbers c and n_o
- In other words, past some arbitrary point, with some arbitrary scaling factor, *f*(*n*) is at least as big
- We say that T(n) is upper bounded by f(n)

Lower order terms don't matter

- Why not?
- We can assume that $n \ge 1$
- In that situation, $n \le n^2 \le n^3 \le n^4$, etc.
- Thus, they can get wrapped into our constant:
 - $pn^2 + qn + r \le pn^2 + qn^2 + rn^2 = (p + q + r)n^2$
- From a practical perspective, lower order terms will also have relatively no impact when *n* gets large

Lower bounds

- Let T(n) be the running time of an algorithm
- Let f(n) be a non-decreasing function
- *T*(*n*) is Ω(*f*(*n*)) if and only if
 - $T(n) \ge \varepsilon \cdot f(n)$ for all $n \ge n_0$ where $n_0 \ge 0$
 - for some positive real numbers ε and n_o
- In other words, past some arbitrary point, with some arbitrary scaling factor, *f*(*n*) is no bigger
- We say that T(n) is lower bounded by f(n)

Tight bounds

- Let T(n) be the running time of an algorithm
- Let f(n) be a non-decreasing function
- If T(n) is O(f(n)) and $\Omega(f(n))$, we say that T(n) is $\Theta(f(n))$
- In other words, past some arbitrary point, with some arbitrary scaling factor, *f*(*n*) grows at about the same rate
- We say that T(n) is tightly bounded by f(n)

Another way to look at tight bounds

- Given two functions f(n) and g(n), if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$
- Then f(n) is is $\Theta(g(n))$ (and vice versa)

Why?

• Because of how a limit works, there is some *n* beyond which the ratio of f(n) to g(n) will be between $\frac{1}{2}c$ and 2c, making f(n) both O(g(n)) and $\Omega(g(n))$

Abuse of notation

- Both this book and many others "abuse" notation by saying things like:
 - $T(n) = O(n^2)$
 - *T*(*n*) = Ω(log *n*)
 - $T(n) = \Theta(\sqrt{n})$
- Those equal signs do not represent mathematical equality
- Instead, they should be read "is"
- It's a shorthand
- I recommend that you do not use it

Properties of Asymptotic Bounds

Transitivity

- If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))
- If f(n) is $\Omega(g(n))$ and g(n) is $\Omega(h(n))$, then f(n) is $\Omega(h(n))$
- If f(n) is $\Theta(g(n))$ and g(n) is $\Theta(h(n))$, then f(n) is $\Theta(h(n))$
- Prove it.

Sums

- If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))
- Prove it.
- If g(n) is O(f(n)), then f(n) + g(n) is $\Theta(f(n))$
 - This is another way of showing that lower order terms don't matter.

Polynomial bounds

- A polynomial of degree d can be written as $f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$, where $a_d > 0$
- For any such polynomial, f(n) is $\Theta(n^d)$
- To prove this, note that any term $a_i n^j \le |a_i| n^d$ when n > 1

Logarithms

- There is a function called the logarithm with base b of x defined from R⁺ to R as follows:
 - $\log_b x = y \Leftrightarrow b^y = x$
- Logarithms are very slowly growing functions, slower than any polynomial function:
 - For any b > 1 and every x > 0, log_b n is O(n^x)
 - Even n^{0.00001} grows faster than log n

Bases don't matter

- The base of a logarithm doesn't matter in asymptotic notationWhy?
- $\bullet \log_a n = \frac{\log_b n}{\log_b a}$
- Thus, $\log_b n = (\log_b a) \log_a n = c \log_a n$

Exponential bounds

- On the other end of the spectrum, any exponential with a base r > 1 will grow faster than any polynomial
 - For every *r* > 1 and every *d* > 0, *n^d* is *O*(*rⁿ*)
 - Even 1.0001ⁿ grows faster than n¹⁰⁰⁰
- People talk about "exponential time," but all exponents are actually different
 - For every *r* > 1 and every *s* > *r*, *rⁿ* is O(*sⁿ*)

Three-sentence Summary of Stable Marriage and Five Representative Problems

Stable Marriage

Imagine *n* men and *n* women

- All 2n people want to get married
- All of them are *willing* to marry any of the n members of the opposite gender
- Each woman has ranked all *n* men in order of preference
- Each man has ranked all *n* women in order of preference
- We want to match them up so that the marriages are **stable**

- Consider two marriages:
 - Anna and Bob
 - Caitlin and Dan
- This pair of marriages is unstable if
 - Anna likes Dan more than Bob and Dan likes Anna more than Caitlin or
 - Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna
- We want to arrange all *n* marriages such that none are unstable

Upcoming

Next time...

- Finish stable marriage
- Five representative problems
- Implementing stable marriage

Reminders

- No class Monday!
- Read Section 2.3
- Assignment 1 is due next Friday