
Week 1 - Friday



 Finished Big Theta examples
 Proof techniques
 Tractability





 For Diwali, Mr. Patel's five daughters gave each other books 
as presents.

 Each presented four books and each received four books, but 
no two girls divided her books in the same way.

 That is, only one gave two books to one sister and two to 
another. Bharat gave all her books to Abhilasha; Chandra
gave three to Esha.

 Who gave how many books to whom? (Mr. Patel's fourth 
daughter is named Deeti.)





 We'll start with basic definitions of even and odd to allow us to 
prove simple theorems

 If n is an integer, then:
 n is even ⇔∃ k ∈ Z such that n = 2k
 n is odd ⇔∃ k ∈ Z such that n = 2k + 1

 Since these are bidirectional, each side implies the other 



 Pick some specific (but arbitrary) element from the domain
 Show that the property holds for that element, just because 

of that properties that any such element must have
 Thus, it must be true for all elements with the property
 Example: ∀x ∈ Z, if x is even, then x + 1 is odd



 Direct proof uses the method of generalizing from a generic 
particular, following these steps:
1. Express the statement to be proved in the form ∀x ∈ D, if P(x) then 

Q(x)
2. Suppose that x is some specific (but arbitrarily chosen) element of 

D for which P(x) is true
3. Show that the conclusion Q(x) is true by using definitions, other 

theorems, and the rules for logical inference 



 Prove the sum of any two odd integers is even.



 In a proof by contradiction, you begin by assuming the 
negation of the conclusion

 Then, you show that doing so leads to a logical impossibility
 Thus, the assumption must be false and the conclusion true



 A proof by contradiction is different from a direct proof 
because you are trying to get to a point where things don't 
make sense

 You should always clearly state that it's a proof by 
contradiction

 You will reach a point where you have p and ~p, mark that as a 
contradiction

 If you're doing a proof by contradiction and you actually show 
the thing you wanted to prove in the first place, it's not a 
proof!



 Theorem:  There is no integer that is both even and odd.
 Proof by contradiction:  Assume that there is an integer that 

is both even and odd



1. Suppose 2 is rational
2. 2 = m/n, where m,n ∈Z, n ≠ 0 and 

m and n have no common factors
3. 2 = m2/n2

4. 2n2 = m2

5. 2k = m2, k ∈Z
6. m = 2a, a ∈Z
7. 2n2 = (2a)2 = 4a2

8. n2 = 2a2

9. n = 2b, b ∈Z
10. 2 divides m and 2 divides n

11. 2 is irrational
∎

1. Negation of conclusion
2. Definition of rational

3. Squaring both sides
4. Multiply both sides by n

2

5. Square of integer is integer
6. Even x

2
implies even x (Proven elsewhere)

7. Substitution
8. Transitivity
9. Even x

2
implies even x

10. Conjunction of 6 and 9, contradiction

11. By contradiction in 10, supposition is false

Theorem: 2 is irrational
Proof by contradiction:





 We want a way to bound the size of an algorithm's running 
time in terms of its input size

 Measuring the exact number of operations would be a lot of 
detailed work
 Which would probably be invalid in a different programming 

language or on a different processor
 Instead, a simplified, rough outline of the speed at which a 

running time increases with input size is more useful



 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 T(n) is O(f(n)) if and only if
 T(n) ≤ c∙f(n) for all n ≥ n0 where n0 ≥ 0
 for some positive real numbers c and n0

 In other words, past some arbitrary point, with some arbitrary 
scaling factor, f(n) is at least as big

 We say that T(n) is upper bounded by f(n)



 Why not?
 We can assume that n ≥ 1
 In that situation, n ≤ n2 ≤ n3 ≤ n4, etc.
 Thus, they can get wrapped into our  constant:
 pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p + q + r)n2

 From a practical perspective, lower order terms will also have 
relatively  no impact when n gets large



 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 T(n) is Ω(f(n)) if and only if
 T(n) ≥ ε∙f(n) for all n ≥ n0 where n0 ≥ 0
 for some positive real numbers ε and n0

 In other words, past some arbitrary point, with some arbitrary 
scaling factor, f(n) is no bigger

 We say that T(n) is lower bounded by f(n)



 Let T(n) be the running time of an algorithm
 Let f(n) be a non-decreasing function
 If T(n) is O(f(n)) and Ω(f(n)), we say that  T(n) is Θ(f(n))
 In other words, past some arbitrary point, with some arbitrary 

scaling factor, f(n) grows at about the same rate
 We say that T(n) is tightly bounded by f(n)



 Given two functions f(n) and g(n), if

lim
𝑛𝑛→∞

𝑓𝑓(𝑛𝑛)
𝑔𝑔(𝑛𝑛)

= 𝑐𝑐 > 0

 Then f(n) is is Θ(g(n)) (and vice versa)
 Why?
 Because of how a limit works, there is some n beyond which the ratio 

of f(n) to g(n) will be between 1
2
𝑐𝑐 and 2c, making f(n) both O(g(n)) 

and Ω(g(n)) 



 Both this book and many others "abuse" notation by saying 
things like:
 T(n) = O(n2)
 T(n) = Ω(log n)
 T(n) = Θ( 𝑛𝑛)

 Those equal signs do not represent mathematical equality
 Instead, they should be read "is"
 It's a shorthand
 I recommend that you do not use it





 If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))
 If f(n) is Ω(g(n)) and g(n) is Ω(h(n)), then f(n) is Ω(h(n))
 If f(n) is Θ(g(n)) and g(n) is Θ(h(n)), then f(n) is Θ(h(n))
 Prove it.



 If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))
 Prove it.
 If g(n) is O(f(n)), then f(n) + g(n) is Θ(f(n))
 This is another way of showing that lower order terms don't matter.



 A polynomial of degree d can be written as f(n) = a0 + a1n + 
a2n2 + … + adnd, where ad > 0

 For any such polynomial, f(n) is Θ(nd)
 To prove this, note that any term ajnj ≤ |aj|nd when n > 1



 There is a function called the logarithm with base b of x 
defined from R+ to R as follows:
 logb x = y ⇔ by = x

 Logarithms are very slowly growing functions, slower than 
any polynomial function:
 For any b > 1 and every x > 0, logb n is O(nx)
 Even n0.00001 grows faster than log n



 The base of a logarithm doesn't matter in asymptotic notation
 Why?

 log𝑎𝑎 𝑛𝑛 = log𝑏𝑏 𝑛𝑛
log𝑏𝑏 𝑎𝑎

 Thus, logb n = (logb a)loga n = cloga n



 On the other end of the spectrum, any exponential with a 
base r > 1 will grow faster than any polynomial
 For every r > 1 and every d > 0, nd is O(rn)
 Even 1.0001n grows faster than n1000

 People talk about "exponential time," but all exponents are 
actually different
 For every r > 1 and every s > r, rn is O(sn)







 All 2n people want to get married
 All of them are willing to marry any of the n members of the 

opposite gender
 Each woman has ranked all n men in order of preference
 Each man has ranked all n women in order of preference
 We want to match them up so that the marriages are stable



 Consider two marriages:
 Anna and Bob
 Caitlin and Dan

 This pair of marriages is unstable if
 Anna likes Dan more than Bob and Dan likes Anna more than Caitlin 

or
 Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna 

 We want to arrange all n marriages such that none are 
unstable





 Finish stable marriage
 Five representative problems
 Implementing stable marriage



 No class Monday!
 Read Section 2.3
 Assignment 1 is due next Friday
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